Waste Water to Resource Recovery

Jon McAteer

March 2016
Contents

- Envirogen
- Waste Water
- Treatment Options
- DACS Anaerobic Technology
- Water Recovery
- Case Studies
Resource Recovery

Envirogen
Envirogen Group

Profile
• Annual Turnover
 – $100M
• Head count
 – Circa 200
• Offices
 – UK
 • Ledbury
 • Alfreton
 – Italy
 • Milan
 – USA
 • Houston
 • Philadelphia
 • Los Angeles

Envirogen Group

Envirogen USA
 • Basin Water
 • Biggler Associates

Envirogen Europe
 • EWS
 • Puresep
 • Fluxa
 • Derwent

AQANA
Processes & Technologies

- **Separation**
 - Cartridge filtration
 - Membrane filtration

- **Biological**
 - Aerobic
 - MBBR
 - MBR
 - Anaerobic
 - DACS
 - DANA

- **Physico/Chem**
 - DAF
 - IX/Evaporation
 - Reverse Osmosis
Waste Water
Waste Water

- Cleaning Processes
 - CIP Systems
 - Wash Down

- In-Process
 - Carrier
 - Material Preparation
 - Condensate

Daily Composite SCOD Load

kg SCOD per day
Waste Water Disposal

- **Mogden Formula**
 - Mechanism used to charge for industrial waste water discharged to sewer
 - Polluter pays principle, the more concentrated the waste, the higher the charge

\[C = R + V + (V_B \text{ or } V_M) + \frac{(O_t/O_S)}{B} + \frac{(S_t/S_S)}{S} \]

- **Road Tankers**
 - To dispose of high strength waste water
 - Where no consent to discharge to sewer
Resource Recovery

Treatment Options
Four Key Treatment Stages

• **Pre-Treatment**
 – Protect downstream equipment
 – Simple screening, flow balancing

• **Primary Treatment**
 – Generally gross solids removal

• **Secondary Treatment**
 – Biological treatment
 • Anaerobic
 • Aerobic

• **Tertiary Treatment**
 – Final polishing
Biological Treatment

Process Options – Biological Treatment

<table>
<thead>
<tr>
<th>Anaerobic Treatment</th>
<th>Aerobic Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion > 90% COD into biogas</td>
<td>Converts > 95% COD into CO₂ & biomass</td>
</tr>
<tr>
<td>Low parasitic energy option</td>
<td>Higher parasitic energy option</td>
</tr>
<tr>
<td>Requires aerobic ‘polishing’</td>
<td>Requires sludge disposal</td>
</tr>
<tr>
<td>Small footprint</td>
<td>Medium to large footprint</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Process Options</th>
<th>100 kg COD</th>
<th>100 kg COD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biogas CH₄ 28 Nm³</td>
<td>CO₂ 9 Nm³</td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td>90% Biogas (80% Methane)</td>
<td>15 kg COD</td>
<td>Biomass</td>
</tr>
<tr>
<td>Sludge 5 kg COD</td>
<td>Aeration 100 kwh</td>
<td>Sludge, 30-60 kg COD</td>
</tr>
<tr>
<td>1 kg COD removed ≈ 0.35 Nm³ CH₄ ≈ 3.8 kWh</td>
<td>Heat loss 2-10 kg COD</td>
<td></td>
</tr>
</tbody>
</table>

1 kg COD removed ≈ 0.35 Nm³ CH₄ ≈ 3.8 kWh
Biological Treatment

Process Options – Biological Treatment

<table>
<thead>
<tr>
<th>Feature</th>
<th>Anaerobic</th>
<th>Aerobic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Consumption</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>• Biogas Production</td>
<td>• Air or Oxygen input</td>
</tr>
<tr>
<td></td>
<td>• 0.07 – 0.1 kWh/kgCOD</td>
<td>• 0.7 – 1 kWh/kg COD</td>
</tr>
<tr>
<td>Sludge Production</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>• 0.03 – 0.05 kg ds/kg COD</td>
<td>• 0.2 – 0.6 kg ds/kg COD</td>
</tr>
<tr>
<td></td>
<td>• Potential value to sludge</td>
<td>• Disposal cost</td>
</tr>
<tr>
<td>Loading Rates</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>• 2 – 25 kg COD/m³ day</td>
<td>• 0.5 – 2 kg COD/m³ day</td>
</tr>
<tr>
<td>Surface Area</td>
<td>High rate process</td>
<td>Low rate process</td>
</tr>
<tr>
<td></td>
<td>• Compact design</td>
<td>• Large footprint</td>
</tr>
</tbody>
</table>
DACS Anaerobic Technology
Anaerobic DACS Technology

Anaerobically Treat Waste Water
- **Downflow Anaerobic Carrier System**
 - Anaerobic conversion of substrates
 - >90% reduction in TCOD
 - Biogas converted in CHP engine to:
 - Biogas
 - Electricity (FiT) / Heat (RHI)

- **Process Security**
 - High rate flocculated biomass
 - Captured in floating carriers – complete biomass retention
 - Gas tight

- **Low OPEX**
 - Gravity flow through carriers and reactor
 - Very low parasitic energy requirement
 - Minimises H₂S and CO₂ in biogas

- **Simplicity of Design**
 - Small footprint
 - No moving parts
 - Simple to operate & maintain
Waste Water to Energy Plant

- Wastewater from Brewery Sump
- Wastewater from Casking Line

Diagram showing the process:
- Screen
- Balance Tank
- Conditioning Tank
- DACS
- Aeration Tank
- Gas Burner
- Gas Buffer
- CHP

Outputs:
- Electricity
- Heat
- Sewer
Water Recovery
Waste Water Recovery Technologies

- **Reverse Osmosis**
 - Physical barrier
 - High quality water

- **Activated Carbon**
 - Remove any organic contamination

- **Evaporation**
 - Recovers water leaving salt residue

- **Disinfection**
 - Provide sterilisation of the recovered water
Case Studies
North East Brewery

Flow
- Daily 1,323 m³

COD
- Load 6,243 kg/day

Biogas
- Volume 2,185 Nm³/day
 - Consumed in site boiler
 - 763 kW\textsubscript{thermal}
Distillery – Biorefinery

- **Distillery**
- **Waste Streams** → **Dewatering and water treatment**
- **Biogas Biomass** → **CHP/Biomass Boiler** → **Steam** → **Turbine**
- **Grain, Yeast and Water** → **Recovered Water**
- **Recovered Water** → **Electricity**
- **Heat for Distilling Process**

System Descriptions:

- **Dewatering and water treatment:** Processes for removing water and solids from waste streams.
- **Biogas Biomass:** Utilized for generating steam.
- **CHP/Biomass Boiler:** Converts biomass into heat and power.
- **Steam:** Used for various processes within the distillery.
- **Turbine:** Converts steam into electricity.

Processes Explained:

- **Distillery Waste Streams:** Returned to the dewatering and water treatment.
- **Recovered Water:** Reused in processes or stored.
- **Grain, Yeast and Water:** Converted into biofuels or distilled products.
- **Electricity and Heat:** Generated from biogas and biomass.
Bio-refinery of Spent Wash

• **Energy Recovery**
 – Target to achieve 98% of thermal requirements and 80% electrical demand

• **Water Recovery**
 – 50% reduction in discharge volume

• **Process Blocks**
 – Biomass preparation
 • Fluidised bed boiler
 – Anaerobic treatment
 • Biogas
 – Ultrafiltration membranes and RO
 • Water recovery
Hall and Woodhouse Brewery

Hall and Woodhouse

- **Water Purification Plant**
 - New plant to replace old
 - Flow
 - Average 360 m³/day
 - COD
 - Average 6,000 mg/l
 - Gas Production
 - Average 760 Nm³/day
 - Energy recovery
Hall and Woodhouse Brewery

Hall and Woodhouse

- Water Purification Plant
 - New plant to replace old
 - Flow
 - Average 360 m3/day
 - COD
 - Average 6,000 mg/l
 - Gas Production
 - Average 760 Nm3/day
 - Energy recovery
Thank You

Please contact Jon McAteer
Mob : 07487 861885
Email : jmcateer@envirogengroup.com